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Abstract— When humans perform a task with an articulated
object, they interact with the object only in a handful of ways,
while the space of all possible interactions is nearly endless. This
is because humans have prior knowledge about what interactions
are likely to be successful, i.e., to open a new door we first try the
handle. While learning such priors without supervision is easy
for humans, it is notoriously hard for machines. In this work,
we tackle unsupervised learning of priors of useful interactions
with articulated objects, which we call interaction modes. In
contrast to the prior art, we use no supervision or privileged
information; we only assume access to the depth sensor in
the simulator to learn the interaction modes. More precisely,
we define a successful interaction as the one changing the
visual environment substantially and learn a generative model
of such interactions, that can be conditioned on the desired
goal state of the object. In our experiments, we show that our
model covers most of the human interaction modes, outperforms
existing state-of-the-art methods for affordance learning, and can
generalize to objects never seen during training. Additionally,
we show promising results in the goal-conditional setup, where
our model can be quickly fine-tuned to perform a given task.
We show in the experiments that such affordance learning
predicts interaction which covers most modes of interaction
for the querying articulated object and can be fine-tuned to a
goal-conditional model. For supplementary: https://actaim.
github.io/.

I. INTRODUCTION

Humans demonstrate tremendous flexibility in operating
objects around them. By leveraging prior experiences, we can
adapt and manipulate new objects through careful interactions
or exploration. A standard method in robotics for building
object priors is by hand-crafting models based on our
knowledge of an object’s relevant properties for a given task.
For instance, various works in articulated object manipulation
design modules to detect handles, obtain part-wise object
segmentation, and estimate articulation parameters to define
interaction plans [1–3]. The rigidness in these explicit models
limits their ability to generalize and capture novel ways of
changing the state of an unknown object, such as grasping
its edge or pushing its surface. In this work, we aim to build
representations that allow defining these interaction modes of
an object implicitly, thereby providing prior knowledge for
manipulating unseen objects. To do so, we focus on interacting
with articulated objects with multiple moving parts as they
do provide multiple affordances to be discovered.

Discovering interaction modes of an object has often been
connected to the idea of affordances [4, 5], i.e., what does the
object offer to an actor in the environment. For instance, a
cabinet with three drawers has six possible interaction modes;
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Fig. 1: ActAIM Overview. We propose a novel model architecture
to learn action affordances of articulated objects using purely visual
data. Without the use of any privileged ground-truth information
or explicit supervision, our model learns distinct interaction modes
that can generalize to new unseen objects.

each drawer providing the affordance to open or close it.
Supervised learning approaches require collecting a large
dataset of interactions, typically with a random policy, and
labeling their effect as a change in the object’s state [6–
8]. However, the sparsity of events that cause a noticeable
change leads to a huge data imbalance and makes these
approaches sample inefficient. Reinforcement learning (RL)
methods avoid large-scale data annotation but suffer from a
similar exploration issue. The policy tends to exploit only a
limited region of the object for manipulation, thereby failing
to discover all the interaction modes [9].

Besides the exploration issue in discovering interaction
modes, existing works [3, 10–17] use the object’s state
information directly as part of their observations, rewards
function computation, or for scoring the amount of change
caused by a particular action. However, humans primarily
learn and act in partially observed settings. Relying solely
on visual information exacerbates the learning problem since
discriminating between interaction modes from images only
(not using additional privileged information) is challenging.

In this paper, we present ActAIM (Action Affordances as
Interaction Modes) to overcome these issues by introducing
the concept of interaction modes which can be clustered
with the specific feature encoder and using only the visual
observations during training. ActAIM discovers semantically
meaningful & varied interaction modes and is also able to
provide goal-conditional task completion. We use implicit
geometry feature to build the semantic representation of
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the object instance which helps generalized across different
categories. Our key contributions are as follows:
1) We propose the idea of interaction modes and a method to

learn meaningful interactions in a self-supervised manner,
from visual observations only.

2) We propose a new clustering-based data collecting strategy
that increases the diversity among interaction modes in
the collected data.

3) We experimentally show that ActAIM generates actions
that cover a variety of ground-truth interaction modes and
lead to successful goal completion, when conditioned on
the goal observation (in the goal-conditional setup).

II. RELATED WORK

Affordance is an important concept in many fields. Based
on the definition from Gibson et al. [4, 5], there has
been a considerable amount of research on affordance in
psychology, neuroscience, cognitive science, human-computer
interaction, robotics, vision, and design. Researchers captured
this general notion in various ways, including language,
semantic segmentation, and key points.
Affordance in robot learning – Prior works have shown that
learning to solve the manipulation problem could benefit from
understanding the concepts of affordance. [18–21] focus on
extracting affordance features using neural networks directly
from image observation in supervised learning. Furthermore,
semantic segmentation could be further extended to scenes
with multi-object in [22]. Besides, affordance can be also
defined as the probability of transition function representing
the possibility of taking action in a certain area in [23].
[24] defines affordance with primitive actions and trains the
agent to learn feasible action in different states which boosts
the efficiency and scalability in performance. Inspired by the
above papers, our work learns affordance from visual input by
defining proper action primitives and trains the model without
any supervision or privileged information from humans.
Semantic keypoint discription – An explicit affordance
representation is the keypoint representation [25–28]. Using
the two-gripper robot, with the help of existing grasping
algorithms such as [29, 30], keypoint representation can be
used to guide robotic grasping in tool or articulated object
manipulation tasks. For task-directed affordance, keypoint
representation is sufficient [26, 27, 30] since the choice of
interaction point is required to be limited and robotic moving
trajectory is compatible to decompose into point movement.
Considering the multi-mode interaction discovery task, we
picked a certain keypoint as the interaction point conditional
on the interaction modes combining with the dense local
geometry feature following the ideas from [31–33].
Dense pixel-wise affordance – Existing dense pixel-wise
affordance learning papers such as [6, 8, 34, 35] predict
per-pixel affordance labels and query from these encodings.
Among these papers, [6] and [36] enlightened us to combine
implicit representation in articulated object manipulation. [36]
solves the grasping task using the Convolutional Occupancy
Network [37] implicit representation model and explores
the synergy of using geometric features. But [36] is limited

to grasping tasks and relies on privileged information such
as object meshes. [6] uses pure visual input to predict
interaction points on articulated objects with predefined action
primitive but requires fixed modes and part segmentation. Our
work takes advantage of [36] by using the neural implicit
representation to extract local geometry features to help
generalize among different articulated objects.

III. PROBLEM FORMULATION

Inspired by the concept of prior knowledge in manipulation,
we formulate the problem of discovery of object affordance
in an unsupervised setting without access to privileged
information. The goal is to build object-centric priors using
only perception throughout the learning process, such that
they facilitate: 1) realizing different types of interation modes
an object offers implicitly, and 2) capturing where and how
to interact with an object for a given interaction mode.

ActAIM takes the depth image of an object as input and out-
puts the possible actions that can be executed with the object
through interaction modes. In contrast to Where2Act [6] that
discretizes the action space into six primitives, we consider
a continuous action space for a parallel-jaw robotic gripper,
a = (p,R,F). The primitive action first reaches and attempts
to grasp an interaction point p over the visible articulated
parts of the object P with an orientation R ∈ SO(3), and
then moves a certain fixed distance along a unit direction
F ∈ [−1, 1]3.

Formally, we obtain a prior distribution over possible
interactions with an articulated object leading to a change in
its state. Under a partially observed setting, this distribution
can be denoted as P(a|o), where o is a visual observation of
the articulated object, such as its depth image D, point cloud
P or truncated signed distance field (TSDF) representation
V . To discriminate between different interaction modes for
an articulated object, we introduce a latent variable z ∈ Z,
and write the prior as:

P(a|o) = P(a|o, z)︸ ︷︷ ︸
action predictor

P(z|o)︸ ︷︷ ︸
mode selector

(1)

The distribution P(z|o) models the possible interaction
modes (latent affordance) of an object given its current
observation. For instance, a completely closed cabinet can
only be opened, so only half of the maximum interaction
modes associated with it are feasible. The distribution
P(a|o, z) models the actions that would lead to the change
associated with the interaction mode z.

IV. ACTAIM: LEARNING INTERACTION MODES

Our goal is to obtain the distributions in (1) without
requiring explicit supervision labels or reward signals, which
are typically computed using articulated objects’ joint state.
To this end, we propose a self-supervised learning method
that generates its own labels through interacting with an
object (Sec. IV-A), and uses these to learn a common visual
embedding for articulated objects that generalizes over unseen
articulated object categories and instances (Sec. IV-B).



Fig. 2: Adaptive data collection using GMM. Visualization of
using GMM to cluster different interaction modes. The clustering is
presented with the t-SNE projection of the manifold. It illustrates
that different interaction modes can be distinguished and clustered
using simple image encoding. The two pie charts on the left show
that using adaptive search for data collection increases the proportion
of rare modes of interaction.

A. Adaptive data collection
We start the data collection by executing actions from the

random policy in the simulator. For every executed action
primitive, we store the tuple (o, a, o′, ŷ), where o = (D0, V )
is the depth image and TSDF at the initial state of the artic-
ulated object, a is the executed action primitive parameters,
o′ = (D1) is the depth image of the articulated object after the
interaction, and ŷ is the computed label determining whether
the interaction is successful. We compute the TSDF before
interaction using multi-view depth images [38].

To collect diverse interaction data, we need to vary object
categories, instances, their initial states, camera views, and
action primitive parameters a. Sampling actions with the
random policy is sub-optimal due to the poor coverage of
all possible interaction modes (e.g., it’s harder to randomly
pull the handle than to push the door). Hence, we propose
an adaptive scheme using unsupervised learning to improve
data more balanced across different modes of interaction.

First, to get an embedding function for the depth images,
we train an autoencoder, D̂ = DD(ED(D)), using an L2

reconstruction loss. In the rest of the paper, we use the encoder
representations, i.e., ED(D), not the raw depth maps D, as
subsequent inputs. Then, we fit a multi-modal distribution that
clusters different interactions into, presumably, interaction
modes. For this, we use the Gaussian Mixture Models
(GMMs): P(a|D0, θ) =

∑K
k=1 αkp(a|D0, θk) where θ is the

distribution parameters and K is the maximum number of
mixtures. We fit this GMM iteratively for a single object
instance with a fixed initial state. We define the effect of an
executed action as, τ̃ = ED(D1)− ED(D0). At the start, we
collect interaction data of size M using a random policy. We
fit GMM only on data that leads to a change in the embedded
space: {(D0, a,D1), |||τ̃ ||2≥ λ}, where λ is a fixed threshold.
We determine ŷ = 1 if ||τ̃ ||2≥ λ otherwise ŷ = 0. For
the following iterations, we sample ϵM interactions with a
random policy and (1 − ϵ)M interactions from the GMM,
and fit a GMM again over the collected data. As shown
in Fig. 2, clustering using GMM discriminates among different

Fig. 3: ActAIM training overview. This figure shows the process
of model training. During the training, ActAIM takes in the initial
and final depth image observations D0 and D1. D0 and D1 are
passed into the encoder Emode to produce the mode latent z, and D0

is passed into the implicit neural geometry encoder to produce a
local geometry feature vp. Mode latent z and local feature vp are
passed into the mode-conditional score function, mode-conditional
point score, and point-conditional action predictor to predict scoring
over the point cloud and the action R and F.

interaction modes and this adaptive sampling strategy yields
a more balanced coverage of interaction modes compared to
a random policy.

B. Self-supervised model for interaction discovery

While the GMM approach described for data generation
clusters different interaction modes, it only does so for single
object instance at a specific state. Instead, we want a model
that generalizes across poses, instances and categories of
objects. Given that a = (p,R,F), we can redefine (1) as:

P(a|o, z) = PR,F|p(R,F|p, o, z) Pp(p|o, z) (2)

where Pp defines the probability of selecting interaction
point p under an interaction mode z, and PR,F|p defines
that for the gripper rotation and moving direction given a
selected interaction point p and interaction mode z. This
decomposition of the action predictor helps reducing the
sampling complexity during inference. Our implementation
of this decomposed pipeline is given in Fig. 3.
1) Mode selector P(z|o)

We model the mode selector P(z|o) with a Conditional
Variational Autoencoder (CVAE) [39] with encoder Emode,
decoder Dmode. This autoencoder operates on the embeddings
of the depth images, (ED(D0), ED(D1)), as described above,
to generate the latent interaction mode z. Latent interaction
mode z captures the difference between D0 and D1 which
represents the state change. The decoder Dmode takes in the
conditional variable ED(D0) and the latent interaction mode z
to reconstruct ED(D1). We train this CVAE structure together
with the further model and optimize it with the regularization
loss and reconstruction loss.



Fig. 4: Generative model object manip-
ulation results: ActAIM takes in the
initial state and predicts the interaction
distribution based on the interaction point
scoring model. The distribution shows
the valid part (colored in red) to interact
with. We sample interaction point based on
the point score and execute the predicted
action. The action will lead to different
interaction mode as shown.

2) Implicit Neural Geometry Encoder
We use an implicit neural geometry encoder that encodes

local geometry features to improve the generalizability of the
model over different categories of articulated objects. Implicit
representation is a continuous function with neural network as
the input. We formalize local geometry feature extraction as
vp = Θ(V,p) where V is the TSDF of the object and p is a
queried point. The structure of the feature extraction network,
Θ, is adapted from Convolutional Occupancy network [37]
(ConvOnet). The ConvOnet decoder conveys the core idea
of implicit representation which provide memory-sufficient
storage of point-wised feature data. Consider the plane feature
Ω = {Ωxy,Ωyz,Ωxz} from the ConvOnet, we extract the
point specific feature vp given the querying point p. Following
[36], we concatenate features using querying point projected
on the corresponding plane and perform bilinear interpolation
ϕ around the neighborhood of the querying point p. We
represent our local feature extraction as,

vp = [ϕ(Ωxy,pxy), ϕ(Ωyz,pyz), ϕ(Ωzx,pzx))] (3)

Where pxy denotes the x and y coordinate of the point p.
We combined the action predictor with this Implicit Neural
Geometry Encoding and express the action predictor as,

P(a|o, z) = PR,F|p(R,F|p, vp, z) Pp(p, vp|o, z) (4)

C. Training procedure

Through the above formulation, we want to jointly train
the distributions (Pp, PR,F|p), the CVAE (Emode,Dmode), and
the neural geometry encoder (Θ).

Mode-conditional score function Q(a|o, z) – We regard the
distribution P(a|o, z) as a score function y = Q(a|vp, z) to
denote the probability of success when taking action a with
the local geometry feature vp. We use the data collected from
GMM represented as {D0, D1, a, ŷ}i and z from the mode
selector CVAE model. We optimize this module using the
binary cross entropy loss with self-supervised label ŷ from
the dataset. The predicted mode conditional critic will be
used to help evaluate the point score function later.

Mode-conditional point score function Qp(p|o, z) – We
model the distribution Pp (of successful interaction at point
p) as a score function yp = Qp(p|vp, z), taking the local
geometric feature vp as input. We train Qp using the data
{D0, a}i and the computed z, and optimize with binary cross

entropy loss. The ground-truth ŷp referring the probability
of point p becoming the interaction point. To obtained the
training signal ŷp, we randomly sample N (100) rotations Ri

and moving directions Fi and compute the label with mode
conditional score function Q(o, a|z) as followed,

ŷp = max{Q(R̂i, F̂i,p|o, z)|i = 1, ..., N} (5)

We are using the maximum to express that the point is valid
to interact with once there exists a successful interaction
using this interaction point.

Point-conditional action predictor πp(R,F|p, o, z) – Given
the interaction point p sampled from the Qp, ActAIM predicts
the rotation and moving direction with Point conditional
action predictor πp(R,F|p, vp, z) together with the local
implicit geometry feature. The module produces rotation R
and moving direction F directly and optimized with collected
data {D0, D1, a}i. Denoting the ground-truth rotation and
moving direction as R̂ and F̂, the loss can be written as

LR + LF = (F− F̂)2 + (1− |R · R̂|) (6)

Final Loss – The complete training loss is now denoted as

L = LCVAE + LQ + LQp + LR + LF (7)

D. Goal-conditional inference

ActAIM can be used for goal-conditional inference, by
providing the desired goal observation D1 as an extra input.
To do so, we replace the generative model with a deterministic
one and fine-tune the system. We treated D1 as the conditional
variable g and re-format the training as followed,

P̃(a|s, g) = P(a|o, z, g)︸ ︷︷ ︸
action predictor

P̃(z|o, g)︸ ︷︷ ︸
goal-conditional mode selector

. (8)

During the training, we keep the same action predictor
and only fine-tune the mode selector P(z|o, g) to be goal-
conditional. This goal conditional mode selector produces the
corresponding interaction mode latent z for action predictor
which in turn proposes action a leading to goal g.

V. EXPERIMENTS

Our experiments aim to evaluate the proposed method,
ActAIM, in terms of: 1) the ability to capture diverse inter-
action modes across varying object instances and categories,
2) its performance on unseen object states and instances



TABLE I: Self-Supervised Affordance Mode Discovery: We evaluate our design choices with baseline and ablation study using the
metrics of sample-success rate, weighted modes ratio and normalized conditional entropy. We also illustrated an extra column which is the
average of the section of articulated objects. In each column section, we bold the best numbers and show that our model outperforms most
of the time. Categories: faucet, table, cabinet, door, window, fridge, kitchen pot, kettle, switch

Test Set Unseen States of Training Objects Unseen instances of Training Categories Unseen Categories

Sample Success Rate % ↑
Random Interaction 5.61 6.05 8.47 14.59 18.15 5.66 9.76 7.99 3.38 6.47 13.86 20.92 4.51 9.52 13.32 10.42 6.04 9.93
Where2Act [6] 33.32 7.05 7.05 17.88 11.64 4.07 13.50 32.99 13.78 6.94 18.89 15.00 5.42 15.50 18.43 9.49 4.14 5.34
ActAIM-PN++ 41.25 44.92 32.46 21.64 46.27 19.52 34.34 21.04 31.21 31.91 19.21 36.14 12.43 25.32 21.37 18.34 21.61 20.44
ActAIM [ours] 49.26 41.36 36.21 28.64 58.31 19.68 38.91 21.98 38.10 35.54 21.03 41.61 16.19 29.07 21.09 24.68 24.13 23.30

Weighted Modes Ratio % ↑
Random Interaction 5.61 5.27 7.62 12.77 15.61 5.26 8.69 4.47 3.12 6.13 9.73 16.72 3.92 7.35 13.32 10.23 5.87 9.81
Where2Act [6] 11.77 6.06 6.25 14.50 8.59 3.51 8.44 10.86 9.71 6.02 11.00 10.63 5.17 8.89 18.43 8.81 3.91 5.19
ActAIM-PN++ 29.11 25.52 20.48 12.81 45.54 17.48 25.16 14.28 24.18 26.66 17.29 25.92 10.44 19.79 18.51 15.76 16.09 16.79
ActAIM [ours] 39.20 36.49 25.56 18.76 57.42 17.29 32.45 15.12 34.58 32.55 18.90 33.21 14.56 24.82 18.92 17.68 17.31 17.97

Weighted Normalized Entropy % ↑
Random Interaction 5.19 4.45 6.80 10.49 10.41 4.18 6.92 7.09 2.82 4.89 5.74 11.30 3.01 5.81 10.02 7.41 5.79 7.74
Where2Act [6] 12.12 5.08 5.41 9.03 5.15 3.23 6.67 15.62 8.31 5.93 6.75 5.30 4.23 7.68 17.84 7.60 3.91 4.89
ActAIM-PN++ 24.60 38.28 28.48 17.85 32.66 8.74 25.10 6.51 13.02 16.43 7.22 14.76 6.00 10.66 15.78 12.34 12.40 13.51
ActAIM [ours] 34.79 36.49 35.64 25.48 41.76 9.31 30.58 7.14 19.38 24.15 7.77 19.27 8.16 14.31 16.31 16.17 15.58 16.02

from known categories, 3) its generalization on objects from
unknown categories, and 4) the utility of the learned priors
for goal-conditioned behaviors.

A. Experimental setup

Following [6], we use articulated objects from the SAPIEN
dataset [40]. For training (seen categories), we pick nine
categories: faucet, table, storage furniture, door, window,
refrigerator, box, trashbin, and safe. For testing (unseen
categories), we pick the 3 extra categories: kitchen pot, kettle,
and switch. For each category, we use 8 object instances
with 4 different initial states for training and testing. We
use IsaacGym [41] simulator to collect interaction data using
a floating Franka parallel-jaw gripper. For collecting depth
images, we vary the view angle of the camera in front of the
object between {−45◦,−22.5◦, 0◦, 22.5◦, 45◦}. To obtain the
TSDF of the articulated object, we only use the given single
depth image to compute the TSDF using [38] during testing
since we have found that using fewer cameras to reconstruct
TSDF does not affect the testing results.

Evaluation Metrics – To evaluate the multi-modal interaction
modes, we use the following metrics to evaluate the prior
distribution P(a|o):
1) sample-success-rate (ssr) – measures the fraction of
proposed interaction trials which are successful [6],

ssr =
# successful proposed interaction

# total proposed interaction
. (9)

2) weighted modes ratio (η) – measures the success rate
weighted by the fraction of the interaction modes discovered,

η = ssr × # successful discovered mode
# total GT modes

. (10)

3) weighted normalized entropy (H̄) – measures the success
rate weighted by the entropy of the distribution.

H̄ = ssr × H(M)

Hmax
, (11)

where entropy H(M) = −
∑

m∈M p(m) log p(m) is com-
puted using p(m), which is the percentage of sampled
interactions leading to mode m. The maximum entropy
Hmax is computed under the condition of equally distributed
proposed interaction modes. Intuitively, for a more balanced
prior distribution to sample rarer modes, H̄ should be higher
since it covers possible interaction modes equally.

We use the ground-truth articulation state and part infor-
mation to compute these metrics. We label an interaction
successful when any object’s DoF changes by at least 10%.
Additionally, the weighted metrics are computed by verifying
if interaction triggers a possible ground-truth interaction mode
of the articulated object.

Baselines for comparisons and ablations – The proposed
problem formulation in III is similar to skill-discovery in
unsupervised RL (URL) [42]. While the formulation is similar,
URL is still to be shown effective in high-dimensional
partially observed settings. In fact, we found that URL
baselines including [43–46] performed poorer than a random
policy and failed to express the complicated interaction modes.
Another approach such as UMPNet [9] looks at articulated
object interaction in a goal-conditioned setting and relies
on the groundtruth articulation state and part segmentation
during training and inference. This is in stark contrast to our
goal of learning priors without such privileged information.

Thus, we compare our approach to the following baselines:
1) Random policy: uniformly samples interaction points

from the articualted object’s point cloud, orientation and
moving direction.

2) Where2Act [6]: computes priors per discretized action
primitive. Since it evaluates interaction modes depending
on separate primitives, we aggregrate the push and pull
interactions and compute the average from these modes.
Different from [6], we provide the whole object point
cloud to the model instead of the segmented movable
points as mentioned in the paper.

3) ActAIM-PN++: is a version of ActAIM that computes



TABLE II: Goal Conditional Evaluation We evaluate our goal conditional model in terms of the success rate of reaching to the provided
goal. We compare our model to Where2Act under 2 different evaluation tasks and bold the best number in each column section. Categories:
faucet, table, cabinet, door, window, fridge, box, trash_can, safe

Test Set Unseen States of Training Objects Unseen instances of Training Categories Unseen Categories

Eval Task Sample Success Rate % ↑
Dec-DoF Where2Act-Push 26.54 21.12 4.02 23.77 20.27 5.17 16.82 10.12 15.54 15.13 43.04 9.42 6.63 16.64 2.52 23.90 43.52 23.31
(Common) ActAIM [ours] 25.32 37.45 19.31 62.91 67.32 61.23 45.59 20.31 36.31 18.24 41.21 29.31 31.42 29.47 15.17 22.50 32.51 23.39
Inc-DoF Where2Act-Pull 12.52 0.27 0.42 0.02 0.98 0.06 2.38 0.00 1.56 0.00 0.04 0.46 0.00 0.34 2.79 0.06 37.52 13.46
(Rare Mode) ActAIM [ours] 24.15 16.21 11.34 28.14 49.31 17.56 24.45 12.41 14.25 9.48 10.46 15.98 13.12 12.62 7.84 13.12 21.41 14.12

Fig. 5: Goal conditional manipulation results: ActAIM takes the
and the target images to generate the mode conditional interaction
distribution. Such distribution illustrates the valid part (colored in
red) to manipulate. We sample the interaction point from pure point
cloud based on the mode conditional point score and predict the
action. The execution of the proposed action leads the initial state
to the target state.

point features vp using PointNet++ [47] instead of Con-
vONet.

B. Goal conditional experiments

As described in Sec. IV-D, the prior distribution can be
used to infer goal-conditioned behaviors. After training the
generative model in ActAIM, we swap the input to the CVAE
with a goal conditional input and fine-tune the trained model.
The goal conditional experiments are set with an extra input,
goal observation D1. We picked goal observation D1 for each
randomly selected object in a random pose and make sure that
goal observation D1 contains either the degrees-of-freedom
increasing or decreasing. We evaluate the goal-conditional
success using sample-success-rate ssrgoal, defined as

ssrgoal =
# proposed interaction leads to goal D1

# total proposed interaction
. (12)

We form the goals D1 as increasing or decreasing object’s
DoF (from D0), and report the average results per goal. We
consider Where2act [6] as a baseline for goal-conditional
inference since it explicitly defines the motion of pushing
and pulling.

C. Discussion of Results

Interaction mode discovery – We evaluate our self-supervised
affordance mode discovery (i.e., non-goal-conditional in-
ference) in Tab I. First, ActAIM leads to a significantly
more frequent successful interaction than the baselines,
despite the fact that Where2Act uses access to ground-truth
interaction modes during training. Also, ActAIM discovers

more interaction modes than the baselines, based on the
weighted normalized entropy. Importantly, the competing
method often trades interaction mode diversity for success
rate, yet, ActAIM leads at both metrics simultaneously. We
attribute our success to our task formulation, the advanced
data collection strategy, and a stronger generative model.

In Fig. 4, we qualitatively show that ActAIM discovers
the correct interaction modes for different types of objects,
even though it is trained without explicit knowledge of
interaction modes. The distribution of interaction points
provides a meaningful object segmentation into the movable
part. Additionally, the interactions proposed by ActAIM lead
to a meaningful change in the states, resulting in different
valid and useful interaction modes.
Goal-conditional inference – To produce the goal-conditional
interaction, we provide the model with an extra input O1,
the visual observation of the goal state. As Table II shows,
our ActAIM outperforms all the baselines on seen training
categories. However, our results are slightly inferior to
Where2Act [6] on the easier task Dec−DoF (i.e., pushing),
which is likely due to more training signals in Where2Act.
Yet, on the rate events (i.e., pulling) our method still does best
even on unseen objects. Figure 5 visualized model outputs
depending on the interaction goal. The goal-conditional
interaction distribution shows how the modes of interaction
change, depending on the given goal, which indicates that
our method learned to map the goals to affordances. The
proposed action illustrates the correct way to grasp or touch
the object and move in a reasonable direction.

VI. CONCLUSIONS

We propose a self-supervised method for discovering action
affordances as modes of interaction for articulated objects,
from purely vision observations. ActAIM generalizes across
different modes of interactions and different categories of
articulated objects. Our method includes a novel adaptive
data collection method, promoting interaction diversity, and a
generative model to produce successful interactions with
the objects, utilizing implicit object representations. Our
results show that our model generates interactions with a
high success rate over a wide range of interaction modes,
and can generalize to unseen objects and categories.
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